

SOLID STATE SOFT STARTER

ASTAT Plus

USER MANUAL

REMARKS:

- 1. Read this manual throughly before using the ASTAT Plus, and store in a safe place for reference.
- 2. Make sure that this manual is delivered to the end user

3. CE MARKING

When using ASTAT Plus in the EU, compliance with EMC is required. ASTAT Plus range comply with the generic EN 50081-2 and EN 50082-2

ASTAT Plus. Soft Starters

WARNINGS

- 1. Disconnect power before installing or servicing.
- 2 Hazardous voltages are present in the motor circuit even when the starter is OFF. An isolation contactor is recommended, configured to provide automatic isolation when the motor is turned OFF.
- **3.** Unit may contain more than one live circuit. Disconnect both control and main circuits before installing or servicing.
- **4.** Soft stop should not be used as an Emergency stop.
- 5. Stopping mode must be set to meet applicable standards for operator safety.
- **6.** Separate motor overcurrent protection is required to be provided in accordance with the Canadian Electrical Code, Part 1. ASTAT Plus provides separate motor protection.

CAUTIONS

- 1. Semi-conductor fuses specified may not provide branch circuit protection. Refer to local applicable electrical codes.
- **2.** Overload relay setting should be properly coordinated with motor.
- 3. Slow speed running will affect the motor thermal characteristic due to reduced cooling. Care must be taken when operating motor under these conditions.
- **4** DC braking braking current may cause motor overheating. Select the lowest braking current and time.
- **5.** DC braking must use additional (DC3) in the motor circuit. See wiring diagram page 6-1.
- **6.** Abnormal starting times in excess of 30 seconds, or closely repeated operations of acceleration ramp/deceleration ramp, slow speed, or DC injection braking may cause motor damage. Contact motor manufacturer for proper motor selection.
- 7. If control power is lost between starts, the overload relay protection is reset to cold start conditions

ASTAT Plus. Soft Starters

PRECAUTIONS

- 1. Debranchez l'alimentation en courant électrique avant de raccorder ou d'intervenir.
- 2. Des tensions dangereuses sort présente dans le circuit moteur même si le soft starter indique la position "arrêt". Un contacteur d'isolement assurant un isolement automatique quand le moteur est arrête, est recommendé.
- 3. L'appareil peut renfermer plus d'un circuit sous tension de brancher les circuits principaux et les circuits de controle avant de raccorder ou d'intervenir.
- **4.** Délestage "soft stop" ne devrait jamais être utilisé en lieu de délestage d'urgence.
- 5. Procédés de délestage doivent être conforme aux normes de sécurité des utilisateurs.

AVERTISSEMENTS

- 1. Les fusibles semi-conducteurs specifies ne protégent pas obligatoirement les circuits se conformer aux codes locaux d'installations électriques.
- 2. Le relais de courant de surcharge doit être proprement coordonné avec la marche du moteur.
- **3.** La marche en sous-régime agira sur les caracteristiques thermiques à cause de la réduction de refroidessement. Opérez le moteur avec précaution dans en ce cas.
- **4.** Ralentissement courant continu peut provoquer la surchauffe de moteur. Choisissez le plus foible courant de décéleration et la durée de ralentissement la plus courte.
- **5.** Pour freinage courant continu, un contacteur (DC3) additional est nécessaire dans le circuit moteur, voir le schéma de raccordement page 6-1.
- 6. Les délais anormaux de mise en service d'une durée supérieure à 30 secondes, ainsi que les montées/descentes en regime, les exploitations régime lent ou les freinages par injection de courant continu répétés et rapportes sont suseptibles d'edommager le moteur. Mettez-vous en rapport avec votre fabricant en ce qui concerne le choix du moteur adéquat.
- 7. En cas d'interruption de l'alimentation entre deux dèmarrages, la protection assurée par démarrage à froid.
- **8.** Le moteur doit être muni d'une protection distincte contre les surintensites, et la surchauffe conformement au code de l'electricite, premiere partie. ASTAT Plus le relais de courant de surcharge doit être proprement coordonne avec la marche du moteur.

INDEX

Section	1. Generalities	1-1
1-1	Comparison of starting systems	1-1
1-2	Advantages of the ASTAT Plus Solid State Soft Starters	1-2
Section	2. Types and Ratings	2-1
2-1	IEC ratings	2-1
2-2	UL ratings	2-2
2-3	Thermal characteristics	2-2
Section	3. Technical specifications	3-1
3-1	General Specifications	3-1
3-2	I/O Terminal Board Specification	3-2
3-3	I/O Wiring	3-3
3-4	Operating modes	3-4
Section	4. Programming	4-1
4-1	Keypad and display description	4-1
4-2	Parameter configuration	4-2
4-3	Monitor block parameters	4-4
4-4	Calibration block parameters	4-5
4-5	Basic block parameters	4-6
4-6	Advanced block parameters	4-7
Section	5. Installation.	5-1
5-1	Equipment installation	5-1
5-2	Fuses, contactors and supply wiring	5-2
5-3	Start-up	5-3
5-4	Troubleshooting	5-3
5-5	Thyristor Check	5-4
Section	6. Appendix	6-1
6-1	Application Diagrams	6-1
6-2	Serial Communications	6-4
6-3	Dimensions	6-7
6.4	PCB's Layout	6-8

1. Generalities

1-1. Comparison of starting systems

There are numerous applications where soft starting and limited current peak are needed and thereby making direct starting of squirrel-cage motors impossible. Traditionally in such cases other types of starting with reduced stator voltage have been resorted to. The best-known are star-delta starters, autotransformer starters, stator resistance starters or using part winding motors.

Any reduced starting voltage imposes a current limitation, and as a consequence the starting torque is also reduced, but there will always be peaks during the change from one point or state to another which can damage the machine being driven. In order to analyse the performances offered by each of these different types of starters, the following table shows the special characteristics of each of them, comparing with the ASTAT system.

Note that in general all reduced voltage starts produce a reduction in torque in squared proportion to the current in the phases of the motor (not on the line) and the latter in turn is reduced in linear proportion to the voltage. From this it can be deduced that any start with reduced voltage reduces the torque in squared proportion to the voltage per motor phase. From this point of view soft starting produces, just like any other reduced voltage start, a reduction in starting torque, according

to the adjusted parameters. The advantage, of course, is the ease with which this ramp can be controlled to produce a soft start in accordance with the actual requirement of the machine.

From the comparison table it can be seen that the maximum starting torque attainable using the soft system is 90% of that which direct starting tends to. Bearing in mind that the direct starting torque varies between 1.5 and 2.4 times rated torque, it can be deduced that with the soft starter, starting torques which are somewhat higher than rated are obtained.

This area includes the starting of pumps, fans, conveyor belts, etc., where a torque in the region of 60% of rated is usually sufficient for correct starting.

As a general rule it can be guaranteed that soft starter will allow starting of drives which are currently used in conventional starting systems, with the advantages outlined, and above all the facility to adjust the current peaks and torque at the machine, faced with the impossibility or difficulty of varying the steps in conventional systems.

	CONVEN	CONVENTIONAL STARTERS							
	Direct	Autotransfo	Stator resistance	Part winding motor	Star-delta				
% of direct start current (in the line)	100%	30 - 40 or 64%	58 - 70%	65%	33%	Depending on adjust, max. 90%			
% of direct start torque	100%	30 - 40 or 64%	33 - 49%	48%	33%	Depending on adjust, max. 90%			
Starting steps (1)	1	4, 3 or 2	3 or 2	2	2	Continuous, no steps			
Connections to motor	3	3	3	6	6	3			
Line overload (approx.)	5 In	1,5 - 2,1 or 3,2 In	3 - 3,5 In	3,25 ln	1,65 ln	Depending on adjust, max. 4-7 In			
Change or starting pause	NO	NO	NO	NO	YES	NO			

^{(1) &}quot;Steps" mean sharp changes of speed during the time from rest until rated speed is reached.

1. Generalities

1-2. Advantages of the ASTAT Plus Solid State Soft starter

Increase in productivity and reliability with the use of static soft starters.

Starting and stopping the motor without steps or transitions lengthens the life of power-driven machine mechanical elements, greatly reducing stress on transmission and coupling parts.

Consequently, overhauling times are reduced and machine and facility lifespans are lengthened.

2 Improvement in acceleration / deceleration characteristics

Being able to start by using the voltage ramp or alternatively by limiting current lets acceleration fit the load characteristics. Application of a pulse start may also be selected in cases of high static friction load.

Braking may be made by cutting-off power or by stop ramp, and it is also possible to brake more energetically by feeding a DC current to the motor stator, so there are many ways to obtain the best possible deceleration.

Protected motor

3

5

The soft starter protects the motor from overloads as well as from incorrect operating conditions such as loss of an input or output phase, blocked rotor, thyristor short circuit, etc.

Digital technology

The control system is based on the use of a highly specialized microcontroller by which signals are treated digitally, thereby avoiding deratings and adjustments common to analogue circuits and obtaining excellent precision and speed of execution.

The control board is made with the technology of surface mounting devices (SMD), which increases equipment reliability.

High level of immunity

Design of the unit was closely tied to the conditions of supply lines, which handle more disturbance every day. The control signals are optoelectronically isolated and various levels of protection have been set up in the circuits to immunize the equipment against external disturbance and its effects.

6 Easy to run and adjust

This unit can be used for a wide range of applications.

Adjustments are very easy to make and diverse options may be selected to have equipment capabilities suited to application needs every time.

7 Easy maintanence due to full monitoring

The signalling code based on alphanumeric display, makes the equipment working conditions known at any time and gives a quick diagnosis when protection security is violated.

8 Pump control

The ASTAT Plus includes a Pump Control function which is more effective than the standard soft stop, reducing fluid surges or hammering in a pipe line system. This method reduces the motor speed, by controlling internal parameters in the motor as well as the output voltage in a close-loop system.

9 Advanced functions

The ASTAT Plus includes advanced functions, like linear acceleration ramp, forward and reverse jog, programmable I/O or connection to a computer by serial communication (RS 232), all included as standard.

These performances allows the incorporation of the soft starter to a distributed control net, in automated plant processes, together with other soft starters, programmable controllers, variable speed drives, etc.

2. Types and ratings

2-1. IEC Ratings (1)

HEAVY D Current rating (2)	220V / 240V	380V / 415V	440V	480V / 500V	Current rating (3)	220V / 240V	380V / 415V	440V	480V / 500V	Degree of protection	TYPE	Weight unit	Cooled
A	kW(4)	kW(4)	kW(4)	kW(4)	Α	kW(5)	kW(5)	kW(5)	kW(5)			Kg.	
14	3 3	5.5 5.5	7.5 7.5	- 7.5	17	4 4	7.5 7.5	7.5 7.5	- 11	IP-00 IP-00	QC1FDP QC2FDP	4,3 4,3	Natural Natural
17	4 4	7.5 7.5	7.5 7.5	- 11	21	5.5 5.5	11 11	11 11	- 13	IP-00 IP-00	QC1GDP QC2GDP	4,3 4,3	Natural Natural
22	5.5 5.5	11 11	11 11	- 15	27	7.5 7.5	13 13	15 15	- 15	IP-00 IP-00	QC1HDP QC2HDP	4,6 4,6	Natural Natural
32	7.5 7.5	15 15	18.5 18.5	- 22	38	10 10	18.5 18.5	22 22	- 25	IP-00 IP-00	QC1IDP QC2IDP	4,6 4,6	Natural Natural
48	13 13	22 22	22 22	- 30	58	15 15	25 25	30 30	- 37	IP-00 IP-00	QC1JDP QC2JDP	12,5 12,5	By fan By fan
63	15 15	30 30	37 37	- 37	75	22 22	37 37	45 45	- 45	IP-00 IP-00	QC1KDP QC2KDP	12,5 12,5	By fan By fan
72	20 20	37 37	37 37	- 45	86	25 25	45 45	50 50	- 50	IP-00 IP-00	QC1LDP QC2LDP	17,0 17,0	By fan By fan
105	30 30	55 55	55 55	- 75	126	37 37	63 63	75 75	- 80	IP-00 IP-00	QC1MDP QC2MDP	17,0 17,0	By fan By fan
156	40 40	75 75	90 90	- 110	187	55 55	90 90	110 110	- 132	IP-00 IP-00	QC1NDP QC2NDP	45,0 45,0	By fan By fan
240	63 63	110 110	132 132	- 160	288	80 80	150 150	165 165	- 200	IP-00 IP-00	QC1QDP QC2QDP	45,0 45,0	By fan By fan
315	90 90	160 160	200 200	- 220	378	110 110	200 200	220 220	- 250	IP-00 IP-00	QC1RDP QC2RDP	55,0 55,0	By fan By fan
370	110 110	200 200	220 220	- 250	444	132 132	220 220	250 250	- 315	IP-00 IP-00	QC1SDP QC2SDP	55,0 55,0	By fan By fan
475	150 150	250 250	250 250	- 335	570	160 160	300 300	355 355	- 400	IP-00 IP-00	QC1TDP QC2TDP	80,0 80,0	By fan By fan
610	200 200	315 315	400 400	- 400	732	220 220	400 400	450 450	- 500	IP-00 IP-00	QC1UDP QC2UDP	105,0 105,0	By fan By fan
850	250 250	450 450	530 530	- 600	1020	300 300	560 560	600 600	- 750	IP-00 IP-00	QC1VDP QC2VDP	120,0 120,0	By fan By fan
1075	355 355	600 600	670 670	- 750	1290	395 395	715 715	750 750	- 850	IP-00 IP-00	QC1XDP QC2XDP	150,0 150,0	By fan By fan

Notes: (1) = Ratings in Amps. given for ambient temperature up to 40°C and 1000m altitude

Derate output current by 1,5% / °C above 40°C.

Derate output current by 1% / 100m above 1000m

(2) = Heavy duty ratings, IEC Class 10 and 20 protections allowed

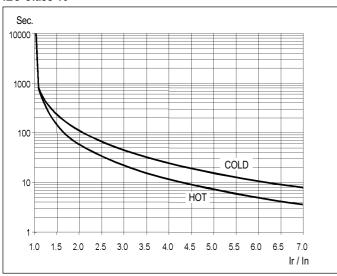
3) = Light duty ratings, only IEC Class 10 protection allowed.

(4) = Maximum recommended Motor Power for IEC Class 20 protection. Set ASTAT's parameters "N" and "o" accordingly

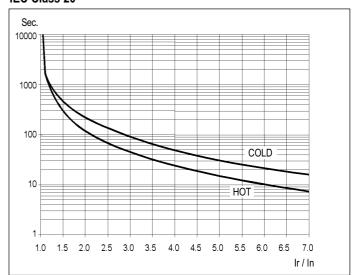
(5) = Maximum recommended Motor Power for IEC Class 10 protection. Set ASTAT's parameters "N" and "o" accordingly

2. Types and ratings

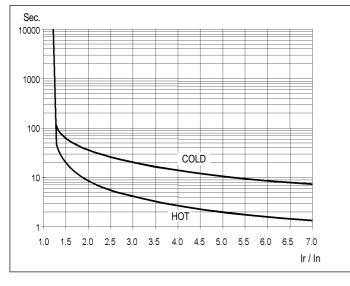
2-2. UL Ratings

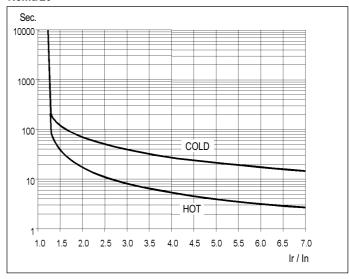

Current rating	Max. starting current	STAND 200V	230V	TY 460V	HEAVY 200V	230V	460V	Degree of protection	ТҮРЕ	Weight (1)	Cooled unit
A	Α	НР	НР	HP	НР	HP	НР			Kg.	
14	70	3 -	3 -	- 7,5	3 -	3 -	- 7,5	IP-00 IP-00	QC1FDP QC2FDP	4,3 4,3	Natural Natural
17	85	3 -	3 -	- 10	3 -	3 -	- 10	IP-00 IP-00	QC1GDP QC2GDP	4,3 4,3	Natural Natural
22	110	5 -	7,5 -	- 15	5 -	7,5 -	- 15	IP-00 IP-00	QC1HDP QC2HDP	4,6 4,6	Natural Natural
34	170	7,5 -	7,5 -	- 20	7,5 -	7,5 -	- 20	IP-00 IP-00	QC1IDP QC2IDP	4,6 4,6	Natural Natural
48	240	15 -	15 -	- 30	10 -	15 -	30	IP-00 IP-00	QC1JDP QC2JDP	12,5 12,5	By fan By fan
63	315	20 -	20	- 40	15 -	20	- 40	IP-00 IP-00	QC1KDP QC2KDP	12,5 12,5	By fan By fan
72	360	20 -	25 -	- 50	20 -	20	- 40	IP-00 IP-00	QC1LDP QC2LDP	17,0 17,0	By fan By fan
105	525	30 -	30 -	- 75	30 -	30 -	- 60	IP-00 IP-00	QC1MDP QC2MDP	17,0 17,0	By fan By fan
156	780	50 -	60 -	- 125	40 -	50 -	- 100	IP-00 IP-00	QC1NDP QC2NDP	45,0 45,0	By fan By fan
240	1200	75 -	75 -	- 200	60 -	75 -	- 150	IP-00 IP-00	QC1QDP QC2QDP	45,0 45,0	By fan By fan
315	1575	100	125 -	- 250	75 -	100	- 200	IP-00 IP-00	QC1RDP QC2RDP	55,0 55,0	By fan By fan
370	1850	125 -	150 -	300	100	125 -	- 250	IP-00 IP-00	QC1SDP QC2SDP	55,0 55,0	By fan By fan
500	2500	150 -	200	- 400	150 -	150 -	- 350	IP-00 IP-00	QC1TDP QC2TDP	80,0 80,0	By fan By fan
630	3150	200	250 -	- 500	200	200	- 400	IP-00 IP-00	QC1UDP QC2UDP	105,0 105,0	By fan By fan
850	4250	300	350 -	- 700	300	350 -	- 700	IP-00 IP-00	QC1VDP QC2VDP	120,0 120,0	By fan By fan

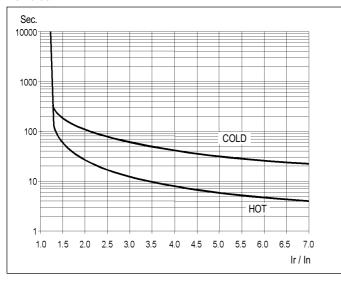
2. Types and ratings


2-3. ASTAT Plus, Thermal characteristics

The ASTAT Plus allows motor protection according IEC Class 10 or Class 20 and Nema 10, 20 or 30, free selectable by parameter "o" -overload-


IEC Class 10


IEC Class 20


Nema 10

Nema 20

Nema 30

Thermal memory:

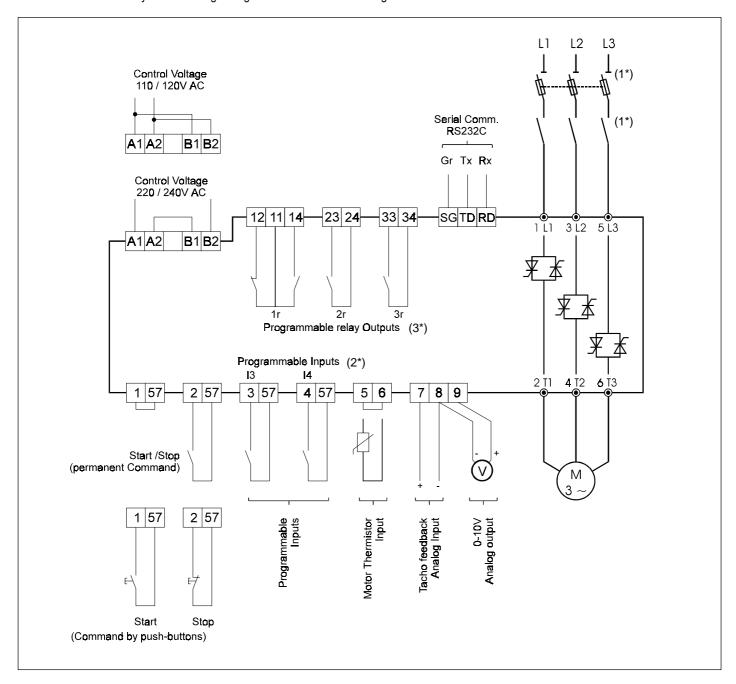
If the control voltage is not removed, the unit has a cool down characteristic, being the cool down time 300 sec. after the overload trip. If the control voltage is removed after tripping, you must wait, at least, 2 minutes before the unit can be restarted.

Operations per hour:

Supposing a cycle T, with starting time of t1, running time of T-2t1 at rated current and OFF time of t1 sec. at least, the ASTAT Plus allows the following operations per hour.

Operations / Hour. Starting time t1= 10sec.	Operations / Hour Starting time t1=20 sec.
180	90
160	60
30	10
	Starting time t1= 10sec. 180 160

3-1. ASTAT Plus, General specifications


Voltage Ratings	3ph AC Systems	Up to 440V, +10%, -15% for QC1xDP ASTAT Plus series Up to 500V, +10%, -15% for QC2xDP ASTAT Plus series
Freq. Range	50/60 H	Control range of 45-65 Hz
Control Specifications	Control system Initial voltage (pedestal) Starting torque Kick start Motor current (Im) Current limitation Acceleration ramp time Energy savings Override Bypass Brake time by ramp DC braking Slow speed Retry Monitoring	10 - 90 M _{direct start}
Operation	External control Acceleration phase Permanent phase Stop phase	Start - Stop Adjustable time Energy savings / Override choice Power cut-off / Ramp / DC braking/Pump control
Inputs / Outputs	Inputs Outputs	4 digital optocoupled. Two fixed (Start , Stop) , and 2 programmable (I3, I4) 1 Analog 0-5VDC for Tachogenerator input feedback 3 programmable relays, (1r, 2r, 3r) 1 Analog 0-10VDC output for current metering
Protections	Radiator overheating Motor thermistor Loss on output phase Stalled rotor Supply frequency error Overcurrent Undercurrent Overvoltage Undervoltage	Adjustable from 1 In to 7 In IEC class 10 and 20; NEMA class 10,20 and 30 all selectable 300 Trip at 3 Trip at 200 Trip at 200 Trip at 200 if thermistor impedance > response value Trip at 3 Trip at 200 If f < 45 or f > 65, will not start 100 to 150% In; trip time adjustable from 0 to 99 sec. 0 to 99% In; trip time adjustable from 0 to 99 sec. 100 to 130% Un; trip time adjustable from 0 to 99 sec. 0 to 50% Un; trip time adjustable from 0 to 99 sec. 4 former errors 2 x ta (ta = acceleration ramp time) 120
Environmental conditions	Temperature Relative humidity Maximum altitude Mounting position Protection Degree	95% without condensation
Standards	CE, cUL Conducted & Radiated emissic Electrostatic discharges Radioelectric interference Immunity to fast trasients Immunity to Surge Voltage	CE Conforming IEC 947-4-2 Conforming IEC 947 -4-2, Class A Conforming to IEC 1000-4-2, level 3 Conforming to IEC 1000-4-6, level 3 and to IEC 1000-4-3, level 3 Conforming to IEC 1000-4-5, level 3 Conforming to IEC 1000-4-5, level 3

3-2. I/O terminal board specifications

Power I/O termin	nals						
Terminal 1L1, 3L2, 5L3	Function Mains Input	Description 3ph input voltage according ASTAT Plus type.					
2T1, 4T2, 6T3	Motor output	Output terminals to 3ph AC motor					
A1, A2, B1, B2	Input Control Voltage	110/120V AC, +10%, -15%: A1 A2 B1 B2 ; 220/240V AC, +10%, -15%: A1 A2 B1 B2					
Digital Inputs Terminal 57	Function Common for digital inputs	Description This is a common terminal for the digital input terminals specified below.					
1 2	Run Stop	Run order. Command signal may be provided by one NO free voltage push-button to terminals 1 and 57. Stop order. Command signal may be provided by one NC free voltage push-button to terminals 2 and 57.					
		Note: Run/Stop permanent command is allowed linking 1-57 and using one dry NO contact to 2-57 terminals.					
3 4	Programmable input I3 Programmable input I4	These two inputs are programmable. Can be assigned to the following internal functions -soft stop -DC brake -Linear Ramp -pump control -slow speed control -dual ramp selection -kick start -reverse slow speed -bypass function -override -local / remote control					
Digital Outputs		Command signal should be provided by one NC dry contact to terminals 57-3 or terminals 57-4. By switching ON / OFF this contact, is possible to enable or disable the assigned function.					
Digital Outputs Terminal 11, 12, 14 23, 24 33, 34	Eunction Programmable relay1r Programmable relay 2r Programmable relay 3r	Description 11-12 = NC, 11-14 = N.O. dry contacts. This relay can be assigned to several internal output functions. (p. 3 As default assigned to function RUN 23-24 = N.O. free voltage contact. This relay can be assigned to several internal output functions. (page 3-6 As default assigned to function EOR 33-34 = N.O. free voltage contact. This relay can be assigned to several internal output functions. (page 3-6					
		As default assigned to function DC BRAKE Common for all relay output contacts Maximum usage voltage: 380VAC Thermal current: 8A. AC-15 use: 220V/3A, 380V/1A DC-15 use: 30V max/3.5A					
Analog I/O Terminal 8 7	Function Analog input common TG feedback input Current Output	Description This is a common terminal for the analog input terminal number 7. 0-5V analog input for speed feedback. It should be provided by a DC tacho-generator coupled to the motor. This speed feedback signal is required when the "linear ramp" function is used. 0-10V DC analog Output for current measurement purpose. Ir correspond to 2V DC Load Impedance 10KΩ or higher					
Motor thermistor Terminal 5,6	r terminals Function Motor thermistor input	$\frac{\text{Description}}{\text{This input allows motor thermistor with response value from 2,8 to 3,2K}\Omega \text{ , and reset value from 0,75 to 1K}\Omega.}$ When the motor thermistor is not used, a link must be set between those terminals.					
Communication Terminal SG, TD, RD	Function Gr, Tx, Rx data	Description RS232C, 3 wires, half duplex. Maximum cable length 3mts. Asynchronous data transmission, 9600 Bauds, 1 bit start, 8 bits data, 1 bit stop. no parity					

3-3. I/O Wiring

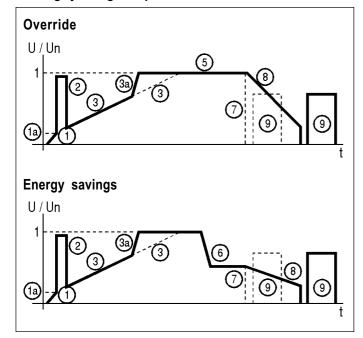
ASTAT Plus's terminal layout and wiring configuration is shown in the diagram of bellow

Notes:

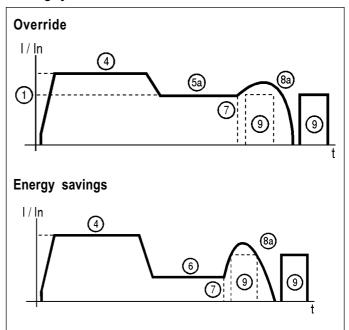
- (1) Control and Mains wiring recommendations are given in chapter 5.
- (2) The programmable inputs I3, I4 are not assigned to any function as default. Check pages 3-6 before to use these inputs.
- (3) The programmable relay outputs are as default assigned to the following functions:

Relay (1r): RUN, (RUN status)

Relay (2r): EOR, (End of Ramp)


Relay (3r): DCBR, (DC Braking control)

3-4. Operating modes


Starting and Stopping

Initial ramp	1	5 main frequncy cycles				
Initial voltage (pedestal)	(1a)	30 to 95% Un (adjustable)				
Kick start	2	95% Un. Enabled by parameter "Pxxx" to ON				
Acceleration ramp (t _{ramp})	3	Voltage ramp up from1 to 99s (adjustable). Dual ramp possibility				
		Linear speed ramp by tacho feedback also possible				
	3 a	Fast increase of output voltage when motor gets rated speed				
Currentlimit	4	1 to 7 ln				
Permanentstate	(5)	Rated voltage (Override)				
	5 a	Rated current				
	6	Energy savings. Enabled by "Fxxx" to OFF				
Stopping modes (All selectable)	7	Motor power cut-off. "Sxxx" to OFF, "Cxxx" to OFF				
	8	Deceleration ramp 1 to 120s (adjustable). Secondary ramp 1 to 99 s				
		Ramp down modes available are:				
		- Soft Stop -Voltage ramp down Enabled by "Sxxx" to ON				
		- Pump control. Selectable by "Sxxx" to ON and "Cxxx" to ON				
		- Linear ramp down (Tacho feedback needed)				
	&a	Evolution of current in deceleration ramp mode				
	9	DC brake (0 to 99s adjustable). Enabled by "Bxxx" to ON				

Starting by voltage ramp

Starting by current limitation

Jog and linear ramp

Linear acceleration and deceleration ramp

1 (a) 2 (3)

Ramp time adjustable (Selectable by parameter "Dxxx" to ON

Low slow (7%) and High slow (14%) speeds

Enabled by parameter "Jxxx" to ON and "jxxx" to LO or HI

Reverse slow speed (20%)

Enabled by parameter "Jxxx" to ON and "rxxx" to ON

Slow speed (7% or 14%)

Enabled by parameter "Jxxx" to ON

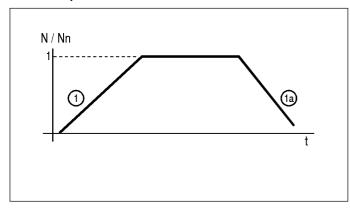
Acceleration ramp

Ramp time adjustable

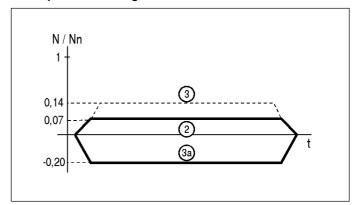
Soft stop (deceleration ramp)

Ramp time adjustable

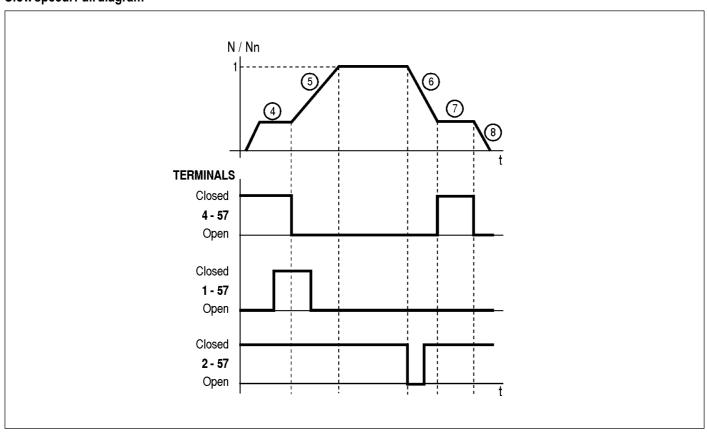
Slow speed (7% or 14%)


Enabled by parameter "Jxxx" to ON

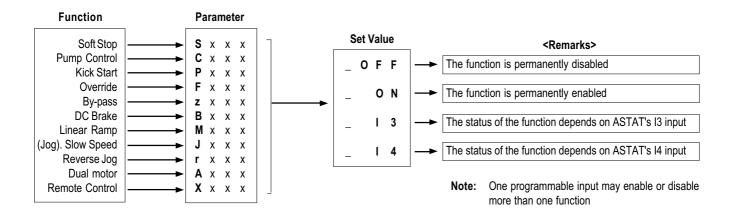
Slow Speed (1 % of 14 %)


Current and time adjustables

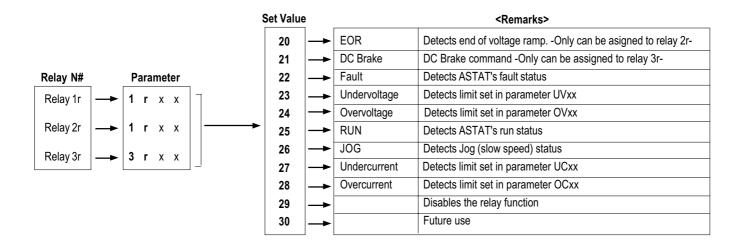
DC Brake


Linear ramp with T.G. feedback

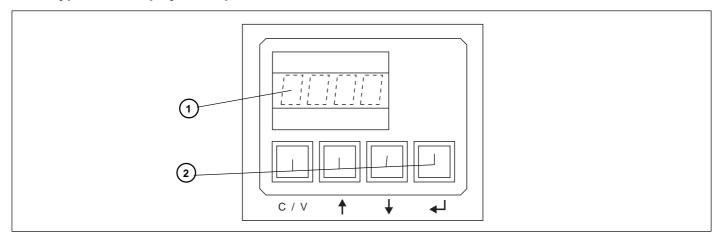
Slow speed. Basic diagram



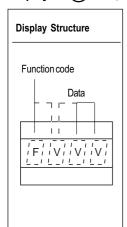
Slow speed. Full diagram


Programmable Inputs and functions

The ASTAT Plus functions like Soft stop, kick start, and almost all others, can be enabled or disabled by setting ON or OFF in their dedicated parameters, using the facilities provided by the keypad. The most of these functions can be enabled or disabled remotely as well, through the programmable inputs I3 or I4 (terminals board 3-57 and 4-57).



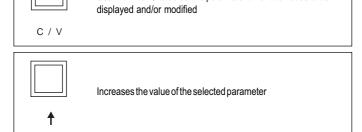
Programmable Relay Outputs

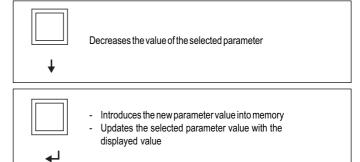

The ASTAT Plus includes three programmable relay namened 1r, 2r and 3r, (dry contacts to ASTAT terminals 11-12-14, 23-24 and 33-34) These relays can be assigned to several functions, as shown bellow

4-1. Keypad and Display description

Display 1 Displays Monitoring, Status indications, error messages and function set values

F	٧	٧	v	Status code
	0	N		Equipment is connected to main supply (equipment is ON)
S	Т	0	Р	Stop
L	0	С	K	Remote stop
Ρ	U	L	S	Kickstart
R	Α	M	Р	Acceleration ramp
F	U	L	L	Full conduction .
S	Α	٧	Ε	Energy saving
S	0	F	Т	Softstop
Ρ	U	M	Ρ	Pump control
D	С	В	K	DC braking
F	U	L	L	Override (full voltage)
ı	N	С	Н	Inching / slow speed
T	Α	С	Н	Linear ramp (tacho)


F	٧	٧	٧	Error code
E	0	1	0	Frequency out of range
Ε	0	1	1	Overload trip
Ε	0	1	3	Loss of synchronism
Ε	0	1	4	Phase U scr
Ε	0	1	5	Phase V scr
Ε	0	1	6	Phase W scr
Ε	0	1	7	Heatsink overtemperature
Ε	0	1	8	Motorthermistor
Ε	0	1	9	Phase U lost
Ε	0	2	0	Phase V lost
Ε	0	2	1	Phase Wlost
Ε	0	2	2	Stalled rotor
Ε	0	2	3	Internal error
Ε	0	2	5	Long start time
Ε	0	2	6	Long slow speed time
Ε	0	2	7	Lock-out
Ε	0	2	8	Undervoltage
Ε	0	2	9	Overvoltage
Ε	0	3	0	Undercurrent
Ε	0	3	1	Overcurrent
Ε	0	3	2	Retry


	F/V	٧	٧	function code (*)
1	х	х	х	Motor current
	X	X	X	Software Version
				•
)	F	x	x	Power Factor
				1 :
	X	X	X	Limitcurrent
	X	X	X	Starting Torque
	X	X	X	Rampuptime
	X	X	X	Ramp down time
	X	X	X	Soft Stop selection
	K	X	X	Lock out
				1.

^(*) These are examples. Full details in sections 4-2, 4-3, 4-4, 4-5 and 4-6

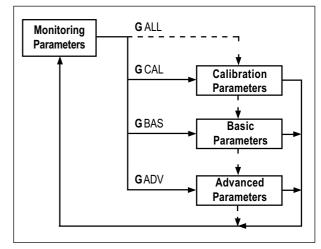
Keypad ② Allows setting of parameters and functions

Use with ↑ or ↓ to select the parameter or function code to be

4-2. Parameter Blocks configuration

Mode Selection

The ASTAT Plus includes a large number of parameters which are divided in four blocks: Monitor, Calibration, Basic and Advanced. The parameters of each group can be displayed or skipped according the selection done in parameter "G".


The monitor parameters are always displayed whichever is the mode selected

Settings in parameter "G" The Monitor parameters are always displayed, **G**XXX

whichever are the settings in parameter "G".

GCAL The Calibration parameters are displayed **G**BAS The Basic parameters are displayed **G**ADV The Advanced parameters are displayed

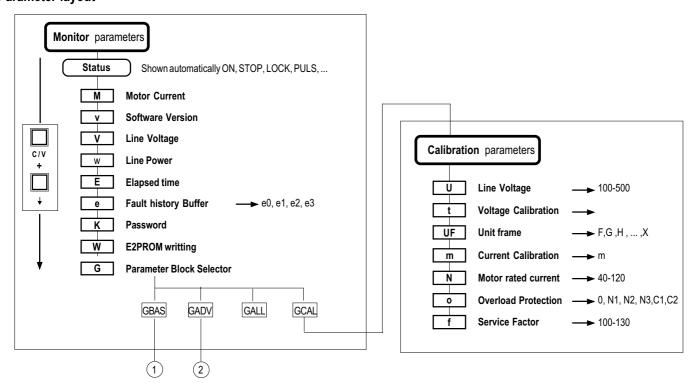
GALL All parameters are displayed

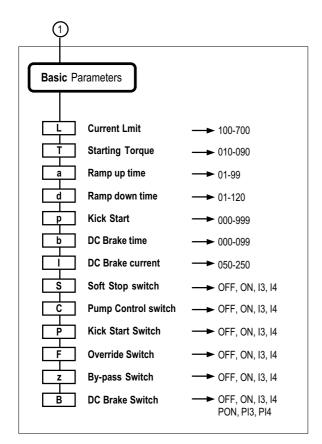
Searching and Setting Parameters

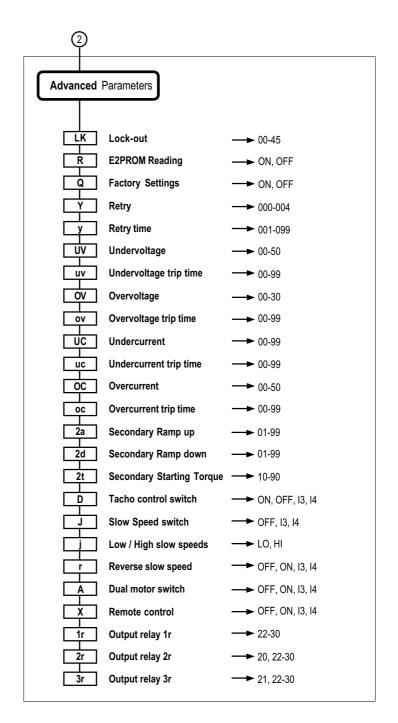
The ASTAT Plus displays the parameters sequentially while maintain pressed the parameter "G" is displayed.

keys.Proceed in this way untill the parameter "G" is displayed. the parameter "G" is displayed.

and Keys. "Gxxx" will be shown whichever is the actual parameter There is a quick way to search automatically the parameter "G" by pressing displayed.


or Keys. The display will sequence "GBAS", "GCAL", "GADV" and Once the parameter "G" is displayed, choose the value desired by pressing


"GALL" values repeatedly. The actual value displayed can be stored in a temporal memory buffer by pressing


Values stored in the temporal memory are lost after switch off, unless these are saved in the permanent E2PROM memory through parameter "W". Additional indications are given in page 4-4

The above is an example given for parameter "G", but all ASTAT Plus parameters can be modified from its default factory value proceeding in similar way.

Parameter lavout

4-3. Monitor block Parameters

Display	Function	Default	Range	Unit	Description
O N	Status	O N	ON	-	Switch on time. Equipment is connected to main supply
			STOP	-	Stop
			LOCK	-	Remote stop. Then the control is made thru serial comm.
			PULS	-	Kick start
			RAMP	-	Acceleration ramp
			FULL	-	Full conduction
			SAVE	-	Energy saving
			SOFT	-	Soft stop
			PUMP	-	Pump control
			DCBK	-	DC braking
			FULL	-	Override (full voltage)
			INCH	-	Inching / slow speed
			TACH	-	Linear ramp (tacho feedback needed)
M x x x	Motor Current		000-999	Α	Displays motor current in Amps.
			1.0-9.9	kA	Current higher than 999A is displayed in kA
				%	If parameter UFxx is not calibrated, the motor current is
					displayed in %N
v x x x	Software Version		-	-	xxx = Version number
V x x x	Main Source Voltage		-	V	Displays line voltage in Volts.
P F x x	Power Factor		00-99	%	Displays line Power Factor
w x x x	Line Power		-	kW	Displays Line Power
E x x x	Elapsed time		-	Hrs	Displays RUN time in Hours (x 1000)
e x x x	Error trace buffer		e0xx-e3xx	-	Saves the last four errors
	=1101 11400 541101		00/01		e0xx: Fault 1 -Latest fault- xx: Fault code error
					e1xx: Fault 2
					e2xx: Fault 3
					e3xx: Fault 4
K x x x	Password	K 0 0 0	000-999	-	= 69 allows E2PROM writing operation
					= 10 Key lock enabled
					= 20 Key lock disabled
W x x x	E2PROM writting	WOFF	ON, OFF	-	Saves the unit current parameters to the E2PROM This rewrites the last values saved
					THE TOTALLOS HIS HAST VALIDOS SUVOU
$\mathbf{G} \times \times \times$	Parameter display	G B A S	CAL, BAS, ADV,	-	CAL: Displays Calibration Parameters
	selection		ALL		BAS: Displays Basic Parameters
					ADV: Displays Advanced Parameters
					ALL: Displays All parameters
					Note: The Monitor block parameters are always displayed

4-4. Calibration block Parameteres -CAL-

Display	Function	Default	Range	Unit	Description
U x x x	Line Voltage setting	U 4 0 0	100-500	V	Line Voltage from 100 to 500V. Set Rated Value
t x x x	Voltage Calibration	t 4 0 0	000-600	V	Setting of this parameter allows better accuracy in monitoring or voltage protections. (Check the current calibration procedure)
U F x	Unit Frame	U F 0	F, G, H, I, J, K, L, M, N, Q, R,X	-	Unit frame rating (F,G,H,X) Setting "0" disables calibration
m x x x	Current Calibration	m 0 0 0	000-1000	A	Setting of this parameter allows better accuracy in monitoring or current protections. (Check the current calibration procedure)
N x x x	Motor Rated Current	N 1 0 0	040-120	%	100 x I motor/ I unit ratio When this parameter is adjusted at a value higher than 105% the overload protection curve is automatically adjusted to Class 10. "C1", or to Nema 20 "N2"
o x x x	Overload Protection	o C 1	OFF N1, N2, N3, C1, C2	-	Selects either the following overload curves OFF: Overload protection disabled (external overload relay must be used) N1: Nema 10 N2: Nema 20 N3: Nema 30 C1: Class 10 C2: Class 20
f x x x	Service Factor	f 1 2 0	100-120	%	Allows motor service factor. Applicable for Nema ratings

(*) Voltage calibration procedure

When the unit is installed on site or after PCB's replacement the voltage measurements may have accuracy of 10%. To improve the Voltage measurement accuracy up to 3% proceed as follow.

- 1. Switch on the ASTAT and measure the RMS voltage on phases 1L1-3L2 using a calibrated voltmeter
- 2. Search the parameter "txxx", set the voltage measured and save this value by the enter's keypad key. It is not necessary to rewrite the E2PROM to make permanent the new setting, the ASTAT plus do this automatically.
- 3. Once the ASTAT has been calibrated, this operation does not need to be repeated. Note however that the parameter "txxx" will show the latest entry, which may differ of actual voltage value.

(*) Current calibration procedure

When the unit is installed on site or after PCB's replacement the current measurements may have accuracy of 10%. To improve the Current measurement accuracy up to 3% proceed as follow.

- 1. Search parameter "UF x" and enter the right ASTAT's frame type letter. ("F", "G", "H", ..etc.)
- Start the motor, and measure the rms motor current using a calibrated Ammeter.This measurement must be done after complete the starting, once the motor current has been stabilized.
- 3. Search the parameter "mxxx", set the current measured and save this value by the enter's keypad key. It is not necessary to rewrite the E2PROM to make permanent the new setting, the ASTAT Plus do this automatically.
- 4. Once the ASTAT has been calibrated, this operation does not need to be repeated. Note however that the parameter "mxxx" will show the latest entry, which may differ of actual current value.

4-5. Basic block Parameteres. -BAS-

4-5-1. Basic Functions

Display	Function		Defa	ult	Rai	nge	Ur	it	Description
Lxxx	Current Limit	L	3 5	0	100	-700	%		Sets Device current Limit. Sets motor current limit if parameter "N" is properly adjusted.
									The maximum range setting is automatically calculated by the unit according the following expression: Max Limit = 450 / N (max at all 700%) N is the motor capacity / unit capacity ratio adjusted in parameter "Nxxx".
T x x	Starting Torque	t	2	0	10	-90	%		Sets the initial voltage applied to the motor
a x x	Ramp Up time	а	2	0	01	-99	sed	Э.	Sets Voltage ramp up time. Motor acceleration time will depend of load conditions.
d x x x	Ramp Down time	d	0 2	0	001	-120	sed	Э.	Sets Voltage ramp down time. Motor deceleration time will depend of load conditions. Enabled only if the parameter "Sxxx" is ON
p x x x	Kick start (1)	р	0 0	0	000	-999	ms	i.	During the time adjusted, provides 95% of full voltage to motor at starting time. Useful for high static-friction loads Enabled only if the parameter "Pxxx" is ON
b x x	DC Brake time (1)	b	0	0	00	-99	sed	Э.	Provides DC braking at stopping time.
I x x x	DC Brake Current (1)	I	0 5	0	050	-250	%		Enabled only if the parameter "Bxxx" is ON
(1) CAUTION If Pump	ON Control is enabled		Fur	ection		Displa	ау		Description
(C=ON) "DC Bra	(C=ON), the "Kick Start" and "DC Brake" functions are		Load detection			рхх		Х	x x x = 0 - 25 (default = 0 in 50Hz P. Source) (default = 15 in 60Hz P. Source)
	tically disabled, so the eters "p", "b" and "I" are	Propo	rtiona	l control		b x x	x	Х	$x \times x = 0-20$ (default=10)
now use	ed to set PID Pump	Integra	al tim	e control				X	x x x = 50-75 (default=50)

4-5-2. Programmable Basic Functions

Control algorithm

Display	Function	Default	Range	Description		
S x x x	Soft Stop selector	S O F F	OFF, ON, I3, I4	Enables or disables all modes of Soft stop		
C x x x	Pump Control selector	COFF	OFF, ON, 13, 14	Enables the Pump control function. It is usefull to limit hammering. The parameter "Sxxx" must be enabled as well.		
P x x x	Kick Start selector	P O F F	OFF, ON, I3, I4	Enables or disables the Klck start function If Pump control function "P" is enabled, both Kick start and DC Brake functions are internally disabled		
F x x x	Override selector	F O F F	OFF, ON, I3, I4	Enables or disables the energy saving feature, providing constant full voltage after starting time. Enabling this function the unit produces the lowest harmonic contents		

Integral time control

Programmable Basic Functions (follow from previous page)

z x x x	By-pass selector	z O F F	OFF, ON, I3, I4	This function provides control of an external by-pass contactor, avoiding unit losses and harmonics When the By-Pass function "z" is enabled, the programmable relay output 2r is automatically assigned to this function, and must be used to control the external by-pass contactor
Вххх	DC Brake selector	BOFF	OFF, ON, 13, 14, PON, PI3, PI4	Enables or disables the DC brake function When the DC Brake function "B" is enabled, the programmable relay output 3r is automatically assigned to this function. PON, PI3 or PI4 settings enable the DC Brake function just before to start the motor. This is usefull to stop a fan which is rotating in reverse at the starting time

4-6. Advanced Block Parameters -ADV-

4-6-1. Advanced Functions

Display	Function		De	fau	ılt	Range	Unit	Description
L K x x	Lock-Out	L	K	0	0	00-45	min.	Sets time between consecutive starts. Setting "0" disables this function.
Rxxx	E2PROM reading	R	0	F	F	ON, OFF	-	Load the parameters from the E2PROM to the temporal buffer
Q x x x	Factory settings	Q	0	F	F	ON, OFF	-	Load default factory settings to the temporal buffer.
Y x	Retry	Υ			0	0-4	-	Allows up to four tries of automatic restart after a fault. Setting "0" disables this function.
y x x	Retry time	у		1	0	01-99	sec.	Time between retries.
U V x x	Undervoltage	U	٧	0	0	00-50	%	The unit trips if the line voltage decreases bellow of the percentage set. Setting "0" disables this protection. Note: Calibrate parameter "U" before to enable this protection.
u v x x	Undervoltage trip time	u	٧	2	0	00-99	sec.	Delay trip time
O V x x	Overvoltage	0	٧	0	0	00-30	%	The unit trips if the line voltage increases above of the percentage set. Setting "0" disables this protection. Note: Calibrate parameter "U" before to enable this protection.
o v x x	Overvoltage trip time	0	٧	2	0	00-99	sec.	Delay trip time
U C x x	Undercurrent	U	С	0	0	00-99	%	The unit trips if the current decreases bellow of the percentage set. Setting "0" disables this protection. Note: Calibrate parameter "U" before to enable this protection.
u c x x	Undercurrent trip time	u	С	2	0	00-99	sec.	Delay trip time
O C x x	Overcurrent	0	С	0	0	00-50	%	The unit trips if the current increases above of the percentage set. Setting "0" disables this protection. Note: Calibrate parameter "U" before to enable this protection.
o c x x	Overcurrent trip time	0	С	2	0	00-99	sec.	Delay trip time.
2 a x x	Dual Ramp Up	2	а	2	0	01-99	%	These are a secondary set of ramp up, ramp down and
2 d x x	Dual Ramp Down	2	d		0	01-99	%	starting torque parameters, which take over the primary
2 T x x	Dual StartingTorque	2	T	2	0	10-90	%	"a", "d" and "T" when the programmable function "A" is enabled.

4-6-2. Programmable Advanced Functions

Display	Function	Default	Range	Description
D x x x	Linear Ramp	D O F F	OFF, ON, I3, I4	This function provides linear acceleration and deceleration ramps in a wider range of load conditions. A DC Tacho-Generator coupled to motor must be used to provide an analog signal feedback of 0-5VDC
J x x x	Slow Speed	JOFF	OFF, I3, I4	This function allows slow speed operation Maximum operation time 120sec.
j x x	Speed changeover	j LO	LO, HI	LO: Low Speed, 7% of rated speed. HI: High Speed, 14% of rated speed.
r x x x	Reverse	r O F F	OFF, ON, I3, I4	Reverse dirention is allowed in "High slow speed" mode only. It provides 20% of rated speed
A x x x	Dual motor selector	AOFF	OFF, ON, 13, 14	This function allows dual motor control settings of acceleration, deceleration and starting torque, and is useful to start or stop a motor in different load conditions.
				When this function is enabled, the parameters 2a, 2d and 2T take over the parameters a, d and T. It allows dual motor control settings
X x x x	Remote control selector	XOFF	OFF, ON, I3, I4	Allows serial communication control by SG, TD and RD terminals. Check Appendix section for more details

4-6-3. Programmable Relay Output Functions

Display	Function	Default	Range	Description
1 r x x	Output relay 1r	1 r 2 5	22-30	This is a programmable relay with one NO / NC dry contacts to ASTAT Plus's terminals 11-12-13
2 r x x	Output relay 2r	2 r 2 0	20, 22-30	This is a programmable relay with one NO dry contact to ASTAT Plus's terminals 23-24
				This relay is automatically assigned to BY-Pass control if the function "z" is ON. Any other assignment by the user is overwrited in this case
3 r x x	Output relay 3r	3 r 2 1	21, 22-30	This is a programmable relay with one NO dry contact to ASTAT Plus's terminals 33-34
				This relay is automatically assigned to DC-Brake control if the function "B" is ON. Any other assignment by the user is overwrited in this case

The programmable relays can be set to the functions shown in the following table $\ensuremath{\mathsf{I}}$

Range	Function	Remarks
20	EOR	Detects end of voltage rampThis function only can be assigned to relay 2r-
21	DC Brake	DC Brake control command -This function only can be assigned to relay 3r-
22	FAULT	Detects unit Fault status
23	Undervoltage	Detects Undervoltage according limit adjusted in function "UV"
24	Overvoltage	Detects Overvoltage according limit adjusted in function "OV"
25	RUN	Detects unit RUN status
26	Slow Speed	Detects slow speed status
27	Undercurrent	Detects Undercurrent according limit adjusted in function "UC"
28	Overcurrent	Detects Overcurrent limits as adjusted in function "OC"
29	Disabled	Disables the relay function
30	Future use	•

5-1. Equipment installation

CAUTION! DISCONNECT POWER BEFORE INSTALLING OR SERVICING

ONLY SPECIALIZED PERSONNEL SHOULD INSTALL THE EQUIPMENT AND ONLY AFTER HAVING READ THIS USER'S GUIDE.

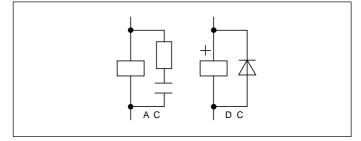
THE USER ITSELF IS RESPONSIBLE FOR ANY PHYSICAL INJURY OR MATERIAL DAMAGE RESULTING FROM MISHANDLING THE EQUIPMENT.

IF YOU HAVE ANY DOUBTS ABOUT ANY PROCEDURE, PLEASE CONTACT YOUR DEALER.

Remarks

Supply wire conductors should have the same section as direct starters. As an indication, **Vd** voltage drop in wires should not be more than 2%.

Vd =
$$\frac{\sqrt{3} \times R \times L \times In}{1000}$$
R = conductor resistance (mΩ/m)
L = conductor length (m)
In = motor rated current (A)

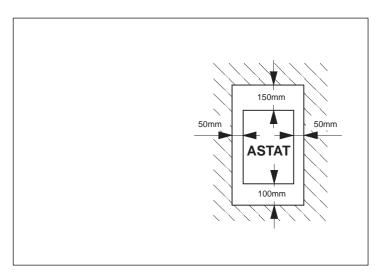

Conductor section (mm²)	2,5	4	6	10	16	25	35	50	100	150
Resistance R (Cu) 20°C (mΩ / m)	7,5	4,55	3,05	1,85	1,13	0,725	0,528	0,254	0,183	0,122
Resistance R (Al) 20°C (mΩ / m)					1,86	1,188	0,868	0,416	0,3	0,2

Signal wiring should be no longer than 50cm, and should be separate from power wires (line, motor, command relays, etc.) by at least 10cm, and if they cross, they should do so at a 90° angle

Relays and contactors located in the same housing as the equipment should have an RC suppressor parallel to the coil (or a reverse diode, if controled by DC).

Do not install capacitors to correct the power factor between equipment output and motor

If the equipment is fed by a line transformer, its rated power should be at least 1.5 times, but less than 10 times, higher than equipment supply.


Environment

When installing equipment, keep the following points in mind:

- The equipment should be installed vertically and hang over a platform or bars. The vertical position is essential for proper cool air circulation
- Environmental conditions are in accordance with the following ranges and maximum values :
 - Operating temperature: 0°C to +55°C
 - Relative humidity (without condensation): 95%
 - Maximum altitude: 3000m

Reduce usage intensity by 1.5%/°C from 40°C and 1%/100m from 1000m

- Do not install equipment in environments containing explosive or flammable gases, or near important heat sources
- Equipment should be well ventilated, at least keeping clearances as indicated in the following illustration.
- When equipment is to be mounted on a platform subject to strong vibrations, there should be an elastic base to protect the equipment.

5. Installation

5-2. Fuses, contactors and supply wiring

IEC Class 10 Ratings

TYPE	In	Total losses	Fuses aM	Fuses FERRAZ type	Fuses BUSSMA	ANN type	Contro	ol voltage	Contactor DC 1	Contactor DC 3	Conductor section
	100 A W		(F1) A	(XX=according mech. design)	(Typower Sicu 660V~) Size In		Fuse A	Consumpt. VA	50 .	(2)	mm ²
QC _ F DP	17	67	25	6,600 CP URC 14.51/40	00	40	1	18	CL02	CL02	4
$QC _ G DP$	21	78	32	6,6 URD 30 XX 0063	00	50	1	18	CL03	CL03	4
QC _ H DP	27	88	40	6,6 URD 30 XX 0080	00	80	1	18	CL04	CL03	6
QC _ I DP	38	116	63	6,6 URD 30 XX 0100	00	100	1	18	CL45	CL04	10
$QC \ _ \ J \ DP$	58	208	80	6,6 URD 30 XX 0125	00	125	2	55	CL07	CL45	16
QC _ K DP	75	277	100	6,6 URD 30 XX 0160	00	160	2	55	CL08	CL06	25
QC _ L DP	86	302	125	6,6 URD 30 XX 0160	00	200	2	55	CL09	CL06	35
QC _ M DP	126	389	200	6,6 URD 30 XX 0250	00	250	2	55	CL75	CL07	50
QC _ N DP	187	719	250	6,6 URD 30 XX 0315	00	315	2	78	CK08	CL10	95
$QC \ _ \ Q \ DP$	288	1097	400	6,6 URD 31 XX 0500	2	550	2	78	CK95	CK85	185
QC _ R DP	378	1286	500	6,6 URD 31 XX 0630	2	630	4	118	CK10	CK85	240
QC _ S DP	444	1374	630	6,6 URD 32 XX 0800	2	800	4	118	CK11	CK95	Bus bar (1)
QC _ T DP	570	2086	800	6,6 URD 33 XX 1000	3	1000	4	118	CK12	CK10	Bus bar (1)
QC _ U DP	732	2352	1000	6,6 URD 33 XX 1250	3	1250	4	248	CK12	CK10	Bus bar (1)
$QC \ V \ DP$	1020	3000	1250	6,6 URD 233 XX 2000	-	-	4	248	CK13	CK11	Bus bar (1)
$QC \ _ \ X \ DP$	1290	3839	2x800	6,6 URD 233 XX 2000	-	-	4	248	CK13	CK12	Bus bar (1)

⁽¹⁾ As per IEC 947

IEC Class 20 Ratings

TYPE	In	Total losses	Fuses aM	Fuses FERRAZ type (XX=according mech. design)	Fuses BUSSMA	ANN type	Control voltage		Contactor DC 1	Contactor DC 3	Conductor section	
	A	100% In W	(F1) A			r Sicu 660V~) In	Fuse A	Consumpt. VA		(2)	mm ²	
QC _ F DP	14	56	20	6,600 CP URC 14.51/40	00	40	1	18	CL01	CL01	4	
QC _ G DP	17	65	25	6,6 URD 30 XX 0063	00	50	1	18	CL02	CL02	4	
QC _ H DP	22	74	32	6,6 URD 30 XX 0080	00	80	1	18	CL03	CL03	4	
QC_I DP	32	99	63	6,6 URD 30 XX 0100	00	100	1	18	CL04	CL04	6	
QC _ J DP	48	178	80	6,6 URD 30 XX 0125	00	125	2	55	CL06	CL04	10	
QC _ K DP	63	236	80	6,6 URD 30 XX 0160	00	160	2	55	CL07	CL04	16	
QC _ L DP	72	257	100	6,6 URD 30 XX 0160	00	200	2	55	CL08	CL06	25	
QC_MDP	105	325	160	6,6 URD 30 XX 0250	00	250	2	55	CL10	CL06	35	
QC _ N DP	156	591	200	6,6 URD 30 XX 0315	00	315	2	78	CK75	CL07	70	
QC_QDP	240	901	315	6,6 URD 31 XX 0500	2	550	2	78	CK85	CK75	120	
QC _ R DP	315	1063	400	6,6 URD 31 XX 0630	2	630	4	118	CK95	CK85	185	
QC _ S DP	370	1136	500	6,6 URD 32 XX 0800	2	800	4	118	CK10	CK85	240	
QC_TDP	475	1721	630	6,6 URD 33 XX 1000	3	1000	4	118	CK11	CK95	Bus bar (1)	
QC _ U DP	610	1950	800	6,6 URD 33 XX 1250	3	1250	4	248	CK12	CK10	Bus bar (1)	
QC_VDP	850	2491	1000	6,6 URD 233 XX 2000	-	-	4	248	CK13	CK10	Bus bar (1)	
QC_XDP	1075	3168	1250	6,6 URD 233 XX 2000	-	-	4	248	CK13	CK12	Bus bar (1)	

⁽¹⁾ As per IEC 947

⁽²⁾ The 3 contacts of DC3 must be connected in parallel

⁽²⁾ The 3 contacts of DC3 must be connected in parallel

5. Installation

5-3. Start-up

 Make sure equipment wiring corresponds to one of the recommended routing diagrams or equivalent 	- If the motor does not have therm beetwen terminals 5 and 6	nal protection sensor, a link must be s	et				
Make sure the control wire harness corresponds to the control voltage used.	110/120V A1 A2		32				
Adapt equipment rated current to motor, setting the motor current In	$N \times X \times X \times X = \frac{\ln (motor)}{\ln (motor)} \times X$	Factory setting					
	Ir (unit)		N 1 0 0				
- Set overload trip curve as needed	oxxx; xx x OFF = disabled C1/C2 = IEC	Factory setting					
	N1/N2/N3= Ne	o C1					
Set starting parameters as needed :			Factory setting				
	Starting torque	T_x x	T _ 20				
	Acceleration ramp time	axxx	a_20				
lm (start)	Kickstart	P ON/OFF/I3/I4	P OFF				
$L \times X \times = \frac{Im (start)}{In (motor)} \times 100$	Kickstart time	p x x x (if P enabled)	P100				
iii (motor)	Currentlimit	Lxxx	L300				
Set braking parameters as needed :			Factory setting				
constanting parameters as necessary	Softstop	S ON/OFF/I3/I4	S OFF				
	Decceleration ramp time	dxxx	d_20				
	DC injection brake	B ON/OFF/I3/I4	B OFF				
	DC braking time	b _ x x (if B enabled)	b5				
	DC braking current	I x x x (if B enabled)	1150				
If do you change the default configuration and wish to keep it, remember to rewrite the parameters in E2PROM as follows :	- Set parameter K to ON (ON = 69 + ↓ ↓) - Set parameter W to ON - Press ↓ (parameter W is set to OFF automatically)						

⁻ Send run command to equipment and make sure that operation is correct.

5-4. Troubleshooting

Symptom or Error	Possible Cause	Measures to be taken		
Display OFF	No control voltage	Check wire harness and control voltage		
2.00,, 0.11	F1 fuse blown on power supply PCB	Check and change		
	Bad connection of flat wire joining power supply PCB to control PCB	Verify connectors		
Equipment does not respond to STOP / START controls	F2 fuse blown on power supply PCB	Check and change		
Frequency error (admits 45Hz ≤ f main ≤ 65Hz)	No 1L1 phase or frequence is out of range	Check 1L1 phase and/or mains frequence		
Overload trip	Excesive load or excesive current during starting	Verify overload conditions during starting time and steady state. Check settings in parameters "Nxxx", "Lxxx", and "oxxx"		

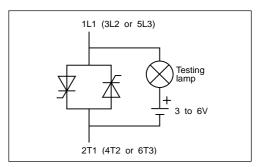
5. Installation

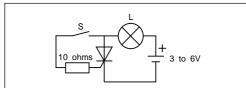
Symptom or Error	Possible Cause	Measures to be taken
Synchronism loss	Phase 1L1 lost	Check 1L1 phase
Phase U, V, W thyristor	Shortcircuited thyristor	Check thyristor module
	No output phases	Check 2T1, 4T2 and 6T3 phases
Heatsink thermostat	Heatsink thermostat tripped by overheating or defective	Check thermostat and wiring
Motor thermistor	Motor thermistor tripped by overheating or defective	Check thermistor and wiring
Phase U, V, W loss	No input / output phases	Check power wire harness for 1L1, 3L2, 5L3, 2T1, 4T2 and 6T3
	Defective thyristor or bad wire harness	Verify gate and cathode wire harness. Verify thyristors
Stalled rotor	Equipment detected stalled motor rotor	Restart equipment and check for an appreciable loss in motor speed at any time (i.e. when the motor is loaded. In this case, try jumping the bypass terminals 3-57 at the end of acceleration ramp).
Internal error	Microcontroller malfunction	Check IC1 and IC8 are correctly inserted in their sockets
Long start time	Current limit condition present more than 2 x ta sec. or 240 sec. (ta = acceleration ramp time)	Increase current limit and / or acceleration ramp time
Long slow speed time	Equipment has been in slow speed mode more than 120 sec.	Avoid this condition
Lock-out	The time between startings is less that the adjusted in parameter "LKxx"	Check is settings are correct This protection may be disabled
Undervoltage Overvoltage	The line voltage exceeds of limit set in parameters "UVxx" or "OVxx"	Check is settings are correct. This protection may be disabled
Undercurrent Overcurrent	The motor current exceeds of limit set in parameters "UCxx" or "OCxx"	Check is settings are correct. This protection may be disabled
Retry	The retry feature could not re-start the motor after a fault	Check last message "e1xx" and correct. Be sure that retry settings are correct as well.

5-5. Thyristor check

Shortcircuit

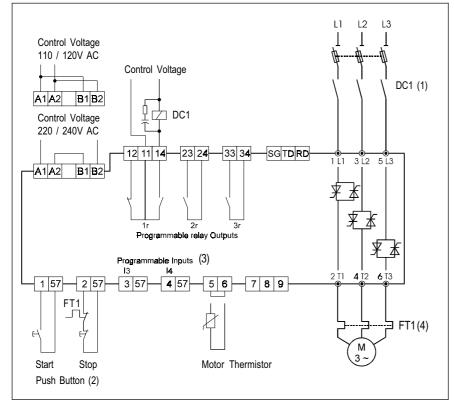
Use a testing lamp to check the defective power module between input and output phases. If the lamp goes on, at least one of the thyristors has a shorcircuit.


Check with a tester the value or the R resistance between input and output of the same phase (connector B on main PCB must be previously removed)

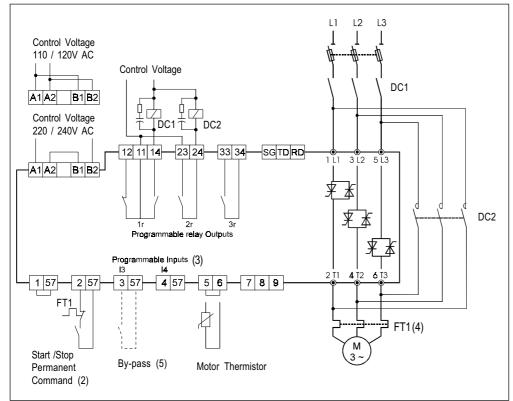

If R < $50K\Omega$, at least one of the thyristor is defective

Open thyristor

With the simple assembling shown here, the lamp should light when the S switch is closed and remain lighting when open.


If not, the thyristor is defective.

6-1. Application diagrams

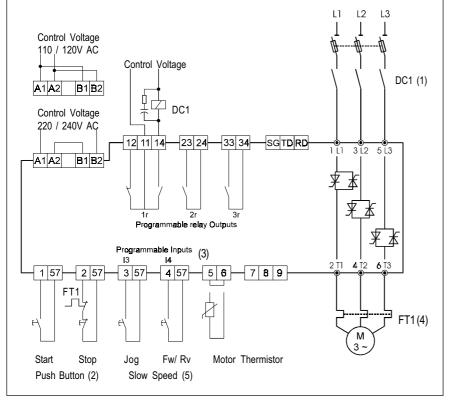

Basic diagram

REMARKS:

- (1) The line contactor DC1, is not required to perform operation to the motor.
 - Be aware however that DC1 provides galvanic isolation from the mains increasing the safety.
- (2) In this example, Start and Stop command is effected by push-buttons. Permanent command is allowed as well, wiring 1, 2 and 57 terminals as shown in page 3-3.
- (3) The output relays allow for direct action on contactors according ratings specified in page 3-2 of this manual.
- (4) The ASTAT Plus is performed with an electronic motor overload protection, which may be enough in the most of the applications.
 - You should use an external overload protection if required by local rules or to protect the motor against current unbalance.

Basic diagram with By-Pass control

REMARKS:

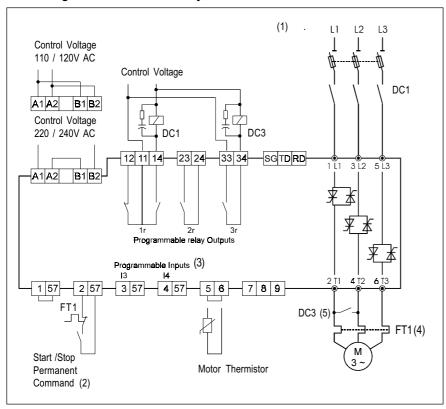

- (1) The line contactor DC1, is not required to perform operation to the motor. Be aware however that DC1 provides galvanic isolation from the mains increasing the safety.
- (2) In this example, Start and Stop command is effected by permanent command. Pushbuttons control is allowed as well, wiring 1, 2 and 57 terminals as shown in page 3-3.
- (3) The output relays allow for direct action on contactors according ratings specified in page 3-2 of this manual.
- (4) CAUTION: In by-pass mode an external overload relay protection must be used.
- (5) By-pass control using function "zxxx" and external contactor DC2. Details given bellow.

By-pass control. Programming steps

- The by-pass function may be enabled by setting "zxxx" to ON. In this case the bypass is automatically done after starting. As alternative, if "zxxx" is set to one of the programmable inputs "I3" or "I4", the bypass may be controlled by one remote signal (5). Check section 4-5-2 for more details.
- Once this function is enabled, the relay 2r is automatically assigned to this function (check section 4-6-3). This relay must be used to control the by-pass contactor.

6-1. Application diagrams

Basic diagram with jog (slow speed) function


REMARKS:

- The line contactor DC1, is not required to perform operation to the motor.
 - Be aware however that DC1 provides galvanic isolation from the mains increasing the safety.
- (2) In this example, Start and Stop command is effected by push-buttons. Permanent command is allowed as well, wiring 1, 2 and 57 terminals as shown in page 3-3.
- (3) The output relays allow for direct action on contactors according ratings specified in page 3-2 of this manual.
- (4) The ASTAT Plus is performed with an electronic motor overload protection, which may be enough in the most of the applications.
 - You should use an external overload protection if required by local rules or to protect the motor against current imbalance.
- (5) Slow Speed for Jog forward or reverse using programmable inputs 13, 14. Details given bellow.

Jog (Slow Speed) function. Programming steps

- The slow speed function may be enabled by setting "Jxxx" to I3. In this case Slow Speed is allowed by a push-button wired to ASTAT's Plus terminals 3-57.
 - Reverse jog is also possible by setting "rxxx" to ON. As alternative, if "rxxx" is set to programmable input I4, forward or reverse may be controlled by remote pushbutton signal (5). Check section 4-6-3 for more details.
- Slow Speed can be effected with ASTAT Plus in stop status. Slow speed and normal run commands are internally interlocked.

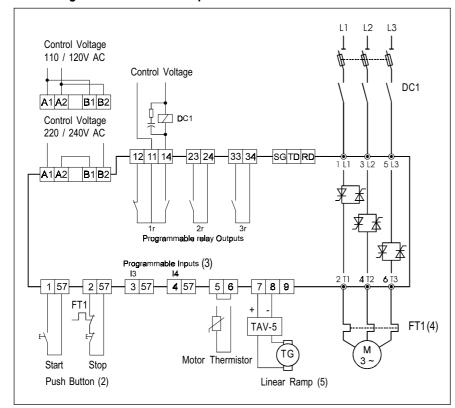
Basic diagram with DC brake injection

REMARKS:

- The line contactor DC1, is not required to perform operation to the motor.
 - Be aware however that DC1 provides galvanic isolation from the mains increasing the safety.
- (2) In this example, Start and Stop command is effected by permanent command. Push-buttons control is allowed as well, wiring 1, 2 and 57 terminals as shown in page 3-
- (3) The output relays allow for direct action on contactors according ratings specified in page 3-2 of this manual.
- (4) The ASTAT Plus is performed with an electronic motor overload protection, which may be enough in the most of the applications. You should use an external overload protection if required by local rules or to protect the motor against current imbalance.
- (5) DC brake at stopping time is provided by the DC brake function and external contactor DC3.

CAUTION:

The 3 contacts of DC3 must be connected in parallel. Mandatory between 2T1 and 4T2 phases, otherwise a short-circuit can occur


DC brake function. Programming steps

- 1. The DC function may be enabled by setting "Bxxx" to ON.
- Once this function is enabled, the relay 3r is automatically assigned to this function. This relay must be used to control the DC brake contactor.

Check section 4-5-1 and 4-5-2 for more details

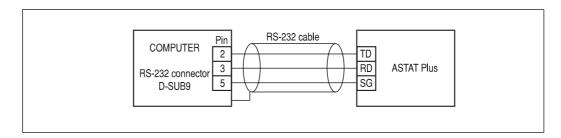
6-1. Application diagrams

Basic diagram with Linear ramp

REMARKS:

- (1) The line contactor DC1, is not required to perform operation to the motor.
 - Be aware however that DC1 provides galvanic isolation from the mains increasing the safety.
- (2) In this example, Start and Stop command is effected by push-buttons. Permanent command is allowed as well, wiring 1, 2 and 57 terminals as shown in page 3-3.
- (3) The output relays allow for direct action on contactors according ratings specified in page 3-2 of this manual.
- (4) The ASTAT Plus is performed with an electronic motor overload protection, which may be enough in the most of the applications.
 - You should use an external overload protection if required by local rules or to protect the motor against current imbalance.
- (5) Linear ramp provided by "Dxxx" function. A tacho generator must be used as feedback. Details given bellow.

Linear ramp function. Programming steps


- The linear ramp function may be enabled by setting "Dxxx" to ON. In this case, linear ramp independent of a wide load range is allowed.
 - This function needs the speed feedback provided by an external tacho generator. Check section 4-6-2 for more details.

6-2. Serial communication

The ASTAT Plus has the possibility to communicate with a host via a standard RS232C. Through this serial communication, the ASTAT can be started, stopped, programmed and checked.

Request from the host to the ASTAT and response from the ASTAT to the host are a series of bytes in ASCII code sequentially transmitted.

6.2.1.- RS-232 connection

6.2.2.-Data transmission format

To write data into a parameter, the format command is the following: Request from host: Wxxxyyy

Response from the ASTAT: Wxxxyyy

where 'xxx' (3 bytes needed) is the parameter number, and 'yyy' (3 bytes needed) is the value to write into the parameter.

Note: the parameters modification is not allowed while the motor is operating.

To read a parameter, the format command is the following: Request from host: Rxxx

Response from the ASTAT: Rxxxyyyyy

where 'xxx' (3 bytes needed) is the parameter number, and 'yyyyy' (5 bytes response) is the value of the parameter.

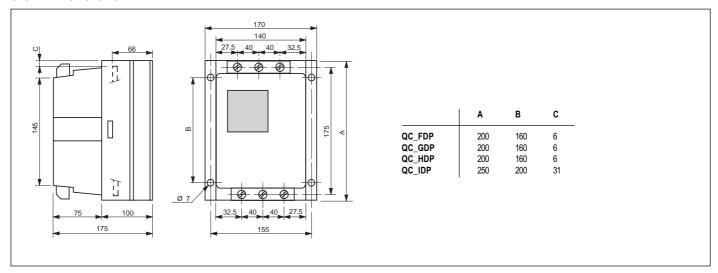
Examples:

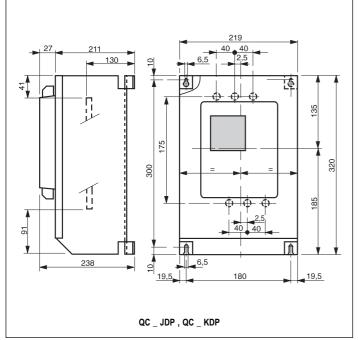
- to start the unit, the command will be: W060000
- to stop the unit, the command will be: W060001
- to set the acceleration ramp time to 35sec., the command will be: W005035
- to know which overload curve is selected, the command will be: **R016**;

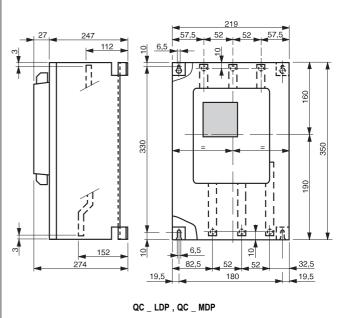
(if for instance the response is R01600004, this means that the overload curve selected is IEC class 10).

The Table A provides a complete reference as for the parameters that can be controlled by the serial interface.

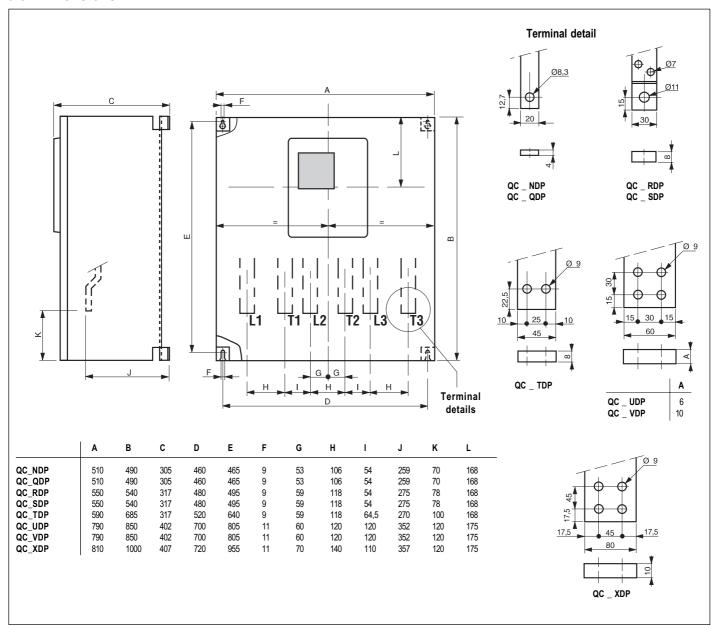
Parameter number	Parameter name	Function	Read/Write (R / W)	Range	Comments
000	Status	Soft starter status	R/-	0 - 14	0: ON 1: STOP 2: LOCK 3: Alarm (errors) 4: PULS 5: RAMP 6: FULL 7: SAVE 8: SOFT 9: DCBK 10: FULL (override) 11: Not used 12: INCH 13: TACH 14: PUMP
001	М	Motor current (%N or Amps, depending on UF parameter)	R/-		
002	N	Nominal motor current (% Unit current)	R/W	40-120	
003	L	Limit current (% In)	R/W	100-700	
004	Т	Starting torque (% DOL torque)	R/W	10-90	
005	а	Acceleration ramp time (sec)	R/W	1-99	
006	d	Deceleration ramp time (sec)	R/W	1-120	

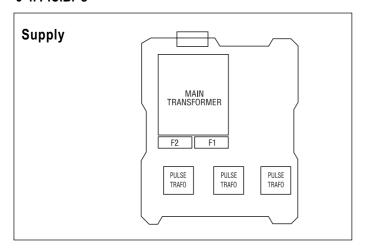

6-2. Serial communication

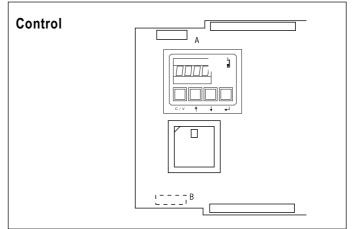

Parameter number	Parameter name	Function	Read/Write (R / W)	Range	Comments
007	р	Kick start time (msec)	R/W	0-999	
008	b	DC brake time (sec)	R/W	0-99	
009	1	DC brake current (% In)	R/W	50-250	
010 S	S	Soft stop control	R/W	0-3	0: OFF
					1: ON
					2: 13
					3: 14
011	С	Pump control	R/W	0-3	0: OFF
•		Tamp control	1,7.1		1: ON
					2: 13
					3: 14
012	P	Kick start control	R/W	0-3	0: OFF
012	'	Non Start Control	17/ 77	0-0	1: ON
					2: 13
					3: 14
040	F	O a said a	DAM	0.0	
013		Override	R/W	0-3	0: OFF
					1: ON
					2: 13
					3: 14
014	В	DC brake control	R/W	0-6	0: OFF
					1: ON
					2: 13
					3: 14
					4: PON
					5: PI3
					6: PI4
015	LK	Lockout (sec)	R/W	0-45	
016	0	Overload trip curve	R/W	0-5	0: OFF
					1: N1
					2: N2
					3: N3
					4: C1
					5: C2
019	R	Read EEPROM	-/W	1	
021	V	Software version	R/-	XXX	VXXX
024	1r	Programmable relay 11-12-14	R/W	22-30	See programmable relays
		,			functions in page xx
025	2r	Programmable relay 23-24	R/W	20,22-30	
026	3r	Programmable relay 33-34	R/W	21-30	
027	OC	Overcurrent (%N)	R/W	0-50	0: OFF
028	oc	Overcurrent time (sec)	R/W	0-99	· · · · · ·
029	r	Reverse slow speed	R/W	0-33	0: OFF
020	'	1.070.00 0.011 0.000	17/11		1: ON
					2: 13
					3: 14
000	V	Debru etterre	DAM	0.4	3. 14
030	Y	Retry attemps	R/W	0-4	
031	y	Retry time (sec)	R/W	1-99	0: OEE
032	UV	Undervoltage (%U)	R/W	0-50	0: OFF
033	u v	Undervoltage time (sec)	R/W	0-99	0.055
034	OV	Overvoltage (%U)	R/W	0-30	0: OFF
035	0 V	Overvoltage time (sec)	R/W	0-99	
036	UC	Undercurrent (%N)	R/W	0-99	0: OFF
037	uc	Undercurrent time (sec)	R/W	0-99	
038	PF	Power factor (%)	R/-	00-99	
039	U	Nominal voltage (volt)	R/W	100-500	
040	V	Line voltage (volt)	R/-		
041	w	Power (KW*10)	R/-	1	


6-2. Serial communication

Parameter number	Parameter name	Function	Read/Write (R / W)	Range	Comments
042	Х	Local/remote control		0-3	0: OFF
					1: ON
					2: 13
					3: 14
043 D	D	Linear ramp control	R/W	0-3	0: OFF
					1: ON
					2: 13
					3: 14
044	J	Slow speed control	R/W	0-2	0: OFF
					1: 13
					2: 14
045	j	Slow speed type	R/W	0-1	0: HI
					1: LO
046	2a	Secondary acceleration ramp time (sec)	R/W	1-99	
047	2d	Secondary deceleration ramp time (sec)	R/W	1-99	
048	Α	Dual ramp selection	R/W	0-3	0: OFF
					1: ON
					2: 13
					3: 14
049	UF	Unit frame	R/W	0-16	0: not defined
					1 to 16: F to X frames
050	E	Elapsed time (hours)	R/-		
052	Q	Recall factory settings	-/W	1	
053	2T	Secondary starting torque (%DOL torque)	R/W	10-90	
056	Z	Bypass function	R/W	0-3	0: OFF
					1: ON
					2: 13
					3: 14
058	f	Service factor (%N)	R/W	100-130	
060	RUN/STOP	RUN/STOP order	-/W		0: RUN
					1: STOP
065	e0xx	error e0	R/-		xx: error code
066	e1xx	error e1	R/-		xx: error code
067	e2xx	error e2	R/-		xx: error code
068	e3xx	error e3	R/-		xx: error code


6-3. Dimensions





6-3. Dimensions

6-4. P.C.B. 's

